Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Parasitol ; 123: 51-123, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38448148

RESUMO

The ascarids are a large group of parasitic nematodes that infect a wide range of animal species. In humans, they cause neglected diseases of poverty; many animal parasites also cause zoonotic infections in people. Control measures include hygiene and anthelmintic treatments, but they are not always appropriate or effective and this creates a continuing need to search for better ways to reduce the human, welfare and economic costs of these infections. To this end, Le Studium Institute of Advanced Studies organized a two-day conference to identify major gaps in our understanding of ascarid parasites with a view to setting research priorities that would allow for improved control. The participants identified several key areas for future focus, comprising of advances in genomic analysis and the use of model organisms, especially Caenorhabditis elegans, a more thorough appreciation of the complexity of host-parasite (and parasite-parasite) communications, a search for novel anthelmintic drugs and the development of effective vaccines. The participants agreed to try and maintain informal links in the future that could form the basis for collaborative projects, and to co-operate to organize future meetings and workshops to promote ascarid research.


Assuntos
Anti-Helmínticos , Zoonoses , Animais , Humanos , Zoonoses/prevenção & controle , Caenorhabditis elegans , Academias e Institutos , Pesquisa , Anti-Helmínticos/uso terapêutico
2.
bioRxiv ; 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38045368

RESUMO

A novel group of biocidal compounds are the Crystal 3D (Cry) and Cytolytic (Cyt) proteins produced by Bacillus thuringiensis (Bt). Some Bt Cry proteins have a selective nematocidal activity, with Cry5B being the most studied. Cry5B kills nematode parasites by binding selectively to membrane glycosphingolipids, then forming pores in the cell membranes of the intestine leading to damage. Cry5B selectively targets multiple species of nematodes from different clades and has no effect against mammalian hosts. Levamisole is a cholinomimetic anthelmintic that acts by selectively opening L-subtype nicotinic acetylcholine receptor ion-channels (L-AChRs) that have been found on muscles of nematodes. A synergistic nematocidal interaction between levamisole and Cry5B has been described previously, but the location, mechanism and time-course of this synergism is not known. In this study we follow the timeline of the effects of levamisole and Cry5B on the Ca2+ levels in enterocyte cells from the intestine of Ascaris suum using fluorescence imaging. The peak Ca2+ responses to levamisole were observed after approximately 10 minutes while the peak responses to activated Cry5B were observed after approximately 80 minutes. When levamisole and Cry5B were applied simultaneously, we observed that the responses to Cry5B were bigger and occurred sooner than when it was applied by itself. It is proposed that there is an irreversible cytoplasmic Ca2+ overload that leads to necrotic cell-death in the enterocyte that is induced by levamisole opening Ca2+ permeable L-subtype nAChRs and the development of Ca2+ permeable Cry5B toxin pores in enterocyte plasma membranes. The effects of levamisole potentiate and speed the actions of Cry5B.

3.
Antimicrob Agents Chemother ; 67(10): e0041923, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37728916

RESUMO

Filarial nematode infections are a major health concern in several countries. Lymphatic filariasis is caused by Wuchereria bancrofti and Brugia spp. affecting over 120 million people. Heavy infections can lead to elephantiasis, which has serious effects on individuals' lives. Although current anthelmintics are effective at killing microfilariae in the bloodstream, they have little to no effect against adult parasites found in the lymphatic system. The anthelmintic diethylcarbamazine is one of the central pillars of lymphatic filariasis control. Recent studies have reported that diethylcarbamazine can open transient receptor potential (TRP) channels in the muscles of adult female Brugia malayi, leading to contraction and paralysis. Diethylcarbamazine has synergistic effects in combination with emodepside on Brugia, inhibiting motility: emodepside is an anthelmintic that has effects on filarial nematodes and is under trial for the treatment of river blindness. Here, we have studied the effects of diethylcarbamazine on single Brugia muscle cells by measuring the change in Ca2+ fluorescence in the muscle using Ca2+-imaging techniques. Diethylcarbamazine interacts with the transient receptor potential channel, C classification (TRPC) ortholog receptor TRP-2 to promote Ca2+ entry into the Brugia muscle cells, which can activate Slopoke (SLO-1) Ca2+-activated K+ channels, the putative target of emodepside. A combination of diethylcarbamazine and emodepside leads to a bigger Ca2+ signal than when either compound is applied alone. Our study shows that diethylcarbamazine targets TRP channels to promote Ca2+ entry that is increased by emodepside activation of SLO-1 K+ channels.


Assuntos
Anti-Helmínticos , Brugia Malayi , Filariose Linfática , Canais de Potencial de Receptor Transitório , Animais , Adulto , Feminino , Humanos , Dietilcarbamazina/farmacologia , Dietilcarbamazina/uso terapêutico , Brugia Malayi/fisiologia , Filariose Linfática/tratamento farmacológico , Filariose Linfática/parasitologia , Canais de Potencial de Receptor Transitório/farmacologia , Canais de Potencial de Receptor Transitório/uso terapêutico , Anti-Helmínticos/farmacologia , Músculos
4.
bioRxiv ; 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37090573

RESUMO

Filarial nematode infections are a major health concern in several countries. Lymphatic filariasis is caused by Wucheria bancrofti and Brugia spp. affecting over 120 million people. Heavy infections can lead to elephantiasis having serious effects on individuals’ lives. Although current anthelmintics are effective at killing the microfilariae in the bloodstream, they have little to no effect against adult parasites found in the lymphatic system. The anthelmintic diethylcarbamazine is one of the central pillars of lymphatic filariasis control. Recent studies have reported that diethylcarbamazine can open Transient Receptor Potential (TRP) channels on the muscles of adult female Brugia malayi leading to contraction and paralysis. Diethylcarbamazine has synergistic effects in combination with emodepside on Brugia inhibiting motility: emodepside is an anthelmintic that has effects on filarial nematodes and is under trials for treatment of river blindness. Here we have studied the effects of diethylcarbamazine on single Brugia muscle cells by measuring the change in Ca 2+ fluorescence in the muscle using Ca 2+ -imaging techniques. Diethylcarbamazine interacts with the TRPC orthologue receptor TRP-2 to promote Ca 2+ entry into the Brugia muscle cells which can activate SLO-1 Ca 2+ activated K + channels, the putative target of emodepside. A combination of diethylcarbamazine and emodepside leads to a bigger Ca 2+ signal than when either compound is applied alone. Our study shows that diethylcarbamazine targets TRP channels to promote Ca 2+ entry that is increased by emodepside activation of SLO-1 channels.

5.
Sci Rep ; 13(1): 4971, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-36973306

RESUMO

Toxocara canis has a complex lifecycle including larval stages in the somatic tissue of dogs that tolerate macrocyclic lactones. In this study, we investigated T. canis permeability glycoproteins (P-gps, ABCB1) with a putative role in drug tolerance. Motility experiments demonstrated that while ivermectin failed to abrogate larval movement, the combination of ivermectin and the P-gp inhibitor verapamil induced larval paralysis. Whole organism assays revealed functional P-gp activity in larvae which were capable of effluxing the P-gp substrate Hoechst 33342 (H33342). Further investigation of H33342 efflux demonstrated a unique rank order of potency for known mammalian P-gp inhibitors, suggesting that one or more of the T. canis transporters has nematode-specific pharmacological properties. Analysis of the T. canis draft genome resulted in the identification of 13 annotated P-gp genes, enabling revision of predicted gene names and identification of putative paralogs. Quantitative PCR was used to measure P-gp mRNA expression in adult worms, hatched larvae, and somatic larvae. At least 10 of the predicted genes were expressed in adults and hatched larvae, and at least 8 were expressed in somatic larvae. However, treatment of larvae with macrocyclic lactones failed to significantly increase P-gp expression as measured by qPCR. Further studies are needed to understand the role of individual P-gps with possible contributions to macrocyclic lactone tolerance in T. canis.


Assuntos
Toxocara canis , Animais , Cães , Toxocara canis/metabolismo , Ivermectina/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Lactonas/metabolismo , Larva/metabolismo , Mamíferos/metabolismo
6.
Sci Rep ; 12(1): 21317, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36494409

RESUMO

The nematode parasite intestine absorbs nutrients, is involved in innate immunity, can metabolize xenobiotics and as we show here, is also a site of action of the anthelmintic, diethylcarbamazine. Diethylcarbamazine (DEC) is used to treat lymphatic filariasis and activates TRP-2, GON-2 & CED-11 TRP channels in Brugia malayi muscle cells producing spastic paralysis. DEC also has stimulatory effects on ascarid nematode parasites. Using PCR techniques, we detected, in Ascaris suum intestine, message for: Asu-trp-2, Asu-gon-2, Asu-ced-11, Asu-ocr-1, Asu-osm-9 and Asu-trpa-1. Comparison of amino-acid sequences of the TRP channels of B. malayi, and A. suum revealed noteworthy similarity, suggesting that the intestine of Ascaris will also be sensitive to DEC. We used Fluo-3AM as a Ca2+ indicator and observed characteristic unsteady time-dependent increases in the Ca2+ signal in the intestine in response to DEC. Application of La3+ and the TRP channel inhibitors, 2-APB or SKF 96365, inhibited DEC mediated increases in intracellular Ca2+. These observations are important because they emphasize that the nematode intestine, in addition to muscle, is a site of action of DEC as well as other anthelmintics. DEC may also enhance the Ca2+ toxicity effects of other anthelmintics acting on the intestine or, increase the effects of other anthelmintics that are metabolized and excreted by the nematode intestine.


Assuntos
Anti-Helmínticos , Ascaris suum , Brugia Malayi , Filariose Linfática , Animais , Ascaris , Anti-Helmínticos/farmacologia , Filariose Linfática/tratamento farmacológico
7.
Int J Parasitol Drugs Drug Resist ; 20: 108-112, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36368250

RESUMO

Human and veterinary filarial nematode infections are a major health concern in tropical countries. They are transmitted by biting insects and mosquitoes. Lymphatic filariasis, a group of filarial infections caused by Brugia spp. and Wucheria bancrofti affect more than 120 million people worldwide. Infected individuals develop swollen limbs and disfigurement, leading to an inability to work and ostracization from society. Control and prophylaxis for these infections involve mass drug administration combinations of anthelmintics including diethylcarbamazine (DEC). DEC has actions on microfilariae, but its effects on adult worms are less pronounced. The SLO-1 (BK) channel activator, emodepside, kills adults of many filarial species. However, the in vivo efficacy of emodepside is suboptimal against B. malayi, possibly due to reduced bioavailability in the lymphatic system. Expressing different slo-1 splice variants in B. malayi also affects sensitivity to emodepside. This study explores the potentiation of emodepside mediated paralysis by DEC in adult female B. malayi. Worminator motility measurements show that co-application of DEC and emodepside increases the potency of emodepside 4-fold. The potentiation of the emodepside effect persists even after the worms recover (desensitize) from the initial effects of DEC. RNAi knock-down demonstrates that the DEC-mediated potentiation of emodepside requires the presence of TRP-2 channels. Our study demonstrates that the addition of DEC could enhance the effect of emodepside where bioavailability or activity against a specific species may be low.


Assuntos
Brugia Malayi , Filariose Linfática , Animais , Adulto , Feminino , Humanos , Brugia Malayi/genética , Dietilcarbamazina/farmacologia , Brugia , Filariose Linfática/tratamento farmacológico , Paralisia/induzido quimicamente , Paralisia/tratamento farmacológico
8.
Proc Natl Acad Sci U S A ; 119(34): e2111932119, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35969762

RESUMO

Glutamate-gated chloride channels (GluCls) are unique to invertebrates and are targeted by macrocyclic lactones. In this study, we cloned an AVR-14B GluCl subunit from adult Brugia malayi, a causative agent of lymphatic filariasis in humans. To elucidate this channel's pharmacological properties, we used Xenopus laevis oocytes for expression and performed two-electrode voltage-clamp electrophysiology. The receptor was gated by the natural ligand L-glutamate (effective concentration, 50% [EC50] = 0.4 mM) and ivermectin (IVM; EC50 = 1.8 nM). We also characterized the effects of nodulisporic acid (NA) on Bma-AVR-14B and NA-produced dual effects on the receptor as an agonist and a type II positive allosteric modulator. Here we report characterization of the complex activity of NA on a nematode GluCl. Bma-AVR-14B demonstrated some unique pharmacological characteristics. IVM did not produce potentiation of L-glutamate-mediated responses but instead, reduced the channel's sensitivity for the ligand. Further electrophysiological exploration showed that IVM (at a moderate concentration of 0.1 nM) functioned as an inhibitor of both agonist and positive allosteric modulatory effects of NA. This suggests that IVM and NA share a complex interaction. The pharmacological properties of Bma-AVR-14B indicate that the channel is an important target of IVM and NA. In addition, the unique electrophysiological characteristics of Bma-AVR-14B could explain the observed variation in drug sensitivities of various nematode parasites. We have also shown the inhibitory effects of IVM and NA on adult worm motility using Worminator. RNA interference (RNAi) knockdown suggests that AVR-14 plays a role in influencing locomotion in B. malayi.


Assuntos
Brugia Malayi , Canais de Cloreto , Indóis , Animais , Brugia Malayi/efeitos dos fármacos , Brugia Malayi/genética , Brugia Malayi/metabolismo , Canais de Cloreto/efeitos dos fármacos , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Ácido Glutâmico/metabolismo , Indóis/farmacologia , Ivermectina/farmacologia , Ligantes
9.
Artigo em Inglês | MEDLINE | ID: mdl-35149380

RESUMO

Ion channels are specialized multimeric proteins that underlie cell excitability. These channels integrate with a variety of neuromuscular and biological functions. In nematodes, the physiological behaviors including locomotion, navigation, feeding and reproduction, are regulated by these protein entities. Majority of the antinematodal chemotherapeutics target the ion channels to disrupt essential biological functions. Here, we have summarized current advances in our understanding of nematode ion channel pharmacology. We review cys-loop ligand gated ion channels (LGICs), including nicotinic acetylcholine receptors (nAChRs), acetylcholine-chloride gated ion channels (ACCs), glutamate-gated chloride channels (GluCls), and GABA (γ-aminobutyric acid) receptors, and other ionotropic receptors (transient receptor potential (TRP) channels and potassium ion channels). We have provided an update on the pharmacological properties of these channels from various nematodes. This article catalogs the differences in ion channel composition and resulting pharmacology in the phylum Nematoda. This diversity in ion channel subunit repertoire and pharmacology emphasizes the importance of pursuing species-specific drug target research. In this review, we have provided an overview of recent advances in techniques and functional assays available for screening ion channel properties and their application.


Assuntos
Anti-Helmínticos , Nematoides , Receptores Nicotínicos , Acetilcolina/metabolismo , Animais , Anti-Helmínticos/metabolismo , Anti-Helmínticos/farmacologia , Nematoides/fisiologia , Receptores de GABA , Receptores Nicotínicos/metabolismo
10.
Sci Rep ; 11(1): 14499, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34262123

RESUMO

Homeostatic plasticity refers to the capacity of excitable cells to regulate their activity to make compensatory adjustments to long-lasting stimulation. It is found across the spectrum of vertebrate and invertebrate species and is driven by changes in cytosolic calcium; it has not been explored in parasitic nematodes when treated with therapeutic drugs. Here we have studied the adaptation of Brugia malayi to exposure to the anthelmintic, levamisole that activates muscle AChR ion-channels. We found three phases of the Brugia malayi motility responses as they adapted to levamisole: an initial spastic paralysis; a flaccid paralysis that follows; and finally, a recovery of motility with loss of sensitivity to levamisole at 4 h. Motility, calcium-imaging, patch-clamp and molecular experiments showed the muscle AChRs are dynamic with mechanisms that adjust their subtype composition and sensitivity to levamisole. This homeostatic plasticity allows the parasite to adapt resisting the anthelmintic.


Assuntos
Anti-Helmínticos/farmacologia , Brugia Malayi/efeitos dos fármacos , Brugia Malayi/fisiologia , Resistência a Medicamentos/efeitos dos fármacos , Acetilcolina/metabolismo , Animais , Cálcio/metabolismo , Resistência a Medicamentos/fisiologia , Fluorescência , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo , Levamisol/farmacologia , Morantel/farmacologia , Paralisia/induzido quimicamente , Técnicas de Patch-Clamp
11.
Parasit Vectors ; 14(1): 305, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099047

RESUMO

BACKGROUND: Drugs currently used for controlling onchocerciasis and lymphatic filariasis (LF) are mainly microfilaricidal, with minimal or no effect on the adult worms. For efficient management of these diseases, it is necessary to search for new drugs with macrofilaricidal activities that can be used singly or in combination with existing ones. Daniellia oliveri and Psorospermum febrifugum are two plants commonly used in the local management of these infections in Bambui, a township in the North West Region of Cameroon, but there is currently no documented scientific evidence to support their claimed anthelmintic efficacy and safety. The aim of this study was to provide evidence in support of the search for means to eliminate these diseases by screening extracts and chromatographic fractions isolated from these plants for efficacy against the parasitic roundworms Onchocerca ochengi and Brugia pahangi. METHODS: The viability of O. ochengi adult worms was assessed using the MTT/formazan assay. Fully confluent monkey kidney epithelial cells (LLC-MK2) served as the feeder layer for the O. ochengi microfilariae (mfs) assays. Viability of the mfs was assessed by microscopic examination for mean motility scoring (relative to the negative control) every 24 h post addition of an extract. The Worminator system was used to test the effects of the extracts on adult B. pahangi motility, and mean motility units were determined for each worm. Cytotoxicity of the active extracts on N27 cells was assessed using the MTS assay. RESULTS: Extracts from D. oliveri and P. febrifugum were effective against the adult roundworms O. ochengi and B. pahangi. Interestingly, extracts showing macrofilaricidal activities against O. ochengi also showed activity against O. ochengi mfs. The hexane stem bark extract of D. oliveri (DOBHEX) was more selective for adult O. ochengi than for mfs, with a half maximal and 100% inhibitory concentration (IC50 and IC100, respectively) against adult O. ochengi of 13.9 and 31.3 µg/ml, respectively. The in vitro cytotoxicity of all active extracts on N27 cells showed selective toxicity for parasites (selectivity index > 1). Bioassay-guided fractionation of the extracts yielded fractions with activity against adult B. pahangi, thus confirming the presence of bioactive principles in the plant extracts. CONCLUSIONS: Our study supports the use of D. oliveri and P. febrifugum in the traditional treatment of onchocerciasis and LF. The further purification of active extracts from these plants could yield lead compounds for filarial drug discovery and development.


Assuntos
Clusiaceae/química , Fabaceae/química , Filaricidas/farmacologia , Onchocerca/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Camarões , Linhagem Celular , Haplorrinos , Humanos , Onchocerca/crescimento & desenvolvimento , Oncocercose/tratamento farmacológico , Oncocercose/parasitologia , Casca de Planta/química
12.
Trends Parasitol ; 37(1): 48-64, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33189582

RESUMO

Here we tell the story of ivermectin, describing its anthelmintic and insecticidal actions and recent studies that have sought to reposition ivermectin for the treatment of other diseases that are not caused by helminth and insect parasites. The standard theory of its anthelmintic and insecticidal mode of action is that it is a selective positive allosteric modulator of glutamate-gated chloride channels found in nematodes and insects. At higher concentrations, ivermectin also acts as an allosteric modulator of ion channels found in host central nervous systems. In addition, in tissue culture, at concentrations higher than anthelmintic concentrations, ivermectin shows antiviral, antimalarial, antimetabolic, and anticancer effects. Caution is required before extrapolating from these preliminary repositioning experiments to clinical use, particularly for Covid-19 treatment, because of the high concentrations of ivermectin used in tissue-culture experiments.


Assuntos
Anti-Helmínticos/farmacologia , Inseticidas/farmacologia , Ivermectina/farmacologia , Animais , Antimaláricos/farmacologia , Antineoplásicos/farmacologia , Antivirais/farmacologia , Linhagem Celular , Canais de Cloreto/efeitos dos fármacos , Vírus da Dengue/efeitos dos fármacos , Canais Iônicos/efeitos dos fármacos , Nematoides/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos , Tratamento Farmacológico da COVID-19
13.
Invert Neurosci ; 20(3): 12, 2020 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-32803437

RESUMO

Brugia malayi is a human filarial nematode parasite that causes lymphatic filariasis or 'elephantiasis' a disfiguring neglected tropical disease. This parasite is a more tractable nematode parasite for the experimental study of anthelmintic drugs and has been studied with patch-clamp and RNAi techniques. Unlike in C. elegans however, calcium signaling in B. malayi or other nematode parasites has not been achieved, limiting the studies of the mode of action of anthelmintic drugs. We describe here the development of calcium imaging methods that allow us to characterize changes in cellular calcium in the muscles of B. malayi. This is a powerful technique that can help in elucidating the mode of action of selected anthelmintics. We developed two approaches that allow the recording of calcium signals in the muscles of adult B. malayi: (a) soaking the muscles with Fluo-3AM, promoting large-scale imaging of multiple cells simultaneously and, (b) direct insertion of Fluo-3 using microinjection, providing the possibility of performing dual calcium and electrophysiological recordings. Here, we describe the techniques used to optimize dye entry into the muscle cells and demonstrate that detectable increases in Fluo-3 fluorescence to elevated calcium concentrations can be achieved in B. malayi using both techniques.


Assuntos
Cálcio/metabolismo , Microscopia de Fluorescência/métodos , Músculo Esquelético/metabolismo , Animais , Brugia Malayi , Feminino
14.
Commun Biol ; 3(1): 449, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32788717

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

15.
Commun Biol ; 3(1): 398, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32724078

RESUMO

Diethylcarbamazine is an important classic drug used for prevention and treatment of lymphatic filariasis and loiasis, diseases caused by filarial nematodes. Despite many studies, its site of action has not been established. Until now, the consensus has been that diethylcarbamazine works by activating host immune systems, not by a direct action on the parasites. Here we show that low concentrations of diethylcarbamazine have direct and rapid (<30 s) temporary spastic paralyzing effects on the parasites that lasts around 4 h, which is produced by diethylcarbamazine opening TRP channels in muscle of Brugia malayi involving TRP-2 (TRPC-like channel subunits). GON-2 and CED-11, TRPM-like channel subunits, also contributed to diethylcarbamazine responses. Opening of these TRP channels produces contraction and subsequent activation of calcium-dependent SLO-1K channels. Recovery from the temporary paralysis is consistent with inactivation of TRP channels. Our observations elucidate mechanisms for the rapid onset and short-lasting therapeutic actions of diethylcarbamazine.


Assuntos
Brugia Malayi/genética , Dietilcarbamazina/farmacologia , Filariose/tratamento farmacológico , Oxirredutases Intramoleculares/genética , Animais , Brugia Malayi/patogenicidade , Filariose/genética , Filariose/parasitologia , Filariose/patologia , Humanos , Canais de Potencial de Receptor Transitório/genética
16.
Artigo em Inglês | MEDLINE | ID: mdl-32470835

RESUMO

Cholinergic agonists, like levamisole, are a major class of anthelmintic drugs that are known to act selectively on nicotinic acetylcholine receptors (nAChRs) on the somatic muscle and nerves of nematode parasites to produce their contraction and spastic paralysis. Previous studies have suggested that in addition to the nAChRs found on muscle and nerves, there are nAChRs on non-excitable tissues of nematode parasites. We looked for evidence of nAChRs expression in the cells of the intestine of the large pig nematode, Ascaris suum, using RT-PCR and RNAscope in situ hybridization and detected mRNA of nAChR subunits in the cells. These subunits include components of the putative levamisole receptor in A. suum muscle: Asu-unc-38, Asu-unc-29, Asu-unc-63 and Asu-acr-8. Relative expression of these mRNAs in A. suum intestine was quantified by qPCR. We also looked for and found expression of G protein-linked acetylcholine receptors (Asu-gar-1). We used Fluo-3 AM to detect intracellular calcium changes in response to receptor activation by acetylcholine (as a non-selective agonist) and levamisole (as an L-type nAChR agonist) to look for evidence of functioning nAChRs in the intestine. We found that both acetylcholine and levamisole elicited increases in intracellular calcium but their signal profiles in isolated intestinal tissues were different, suggesting activation of different receptor sets. The levamisole responses were blocked by mecamylamine, a nicotinic receptor antagonist in A. suum, indicating the activation of intestinal nAChRs rather than G protein-linked acetylcholine receptors (GARs) by levamisole. The detection of nAChRs in cells of the intestine, in addition to those on muscles and nerves, reveals another site of action of the cholinergic anthelmintics and a site that may contribute to the synergistic interactions of cholinergic anthelmintics with other anthelmintics that affect the intestine (Cry5B).


Assuntos
Ascaris suum , Levamisol/farmacologia , Receptores Nicotínicos , Acetilcolina/metabolismo , Animais , Ascaris suum/efeitos dos fármacos , Ascaris suum/metabolismo , Sinalização do Cálcio/fisiologia , Hibridização in Situ Fluorescente/métodos , Intestinos/fisiologia , Antagonistas Nicotínicos/farmacologia , RNA Mensageiro/metabolismo , Receptores Nicotínicos/efeitos dos fármacos , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo
17.
PLoS Pathog ; 16(4): e1008396, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32243475

RESUMO

Nematode parasites infect approximately 1.5 billion people globally and are a significant public health concern. There is an accepted need for new, more effective anthelmintic drugs. Nicotinic acetylcholine receptors on parasite nerve and somatic muscle are targets of the cholinomimetic anthelmintics, while glutamate-gated chloride channels in the pharynx of the nematode are affected by the avermectins. Here we describe a novel nicotinic acetylcholine receptor on the nematode pharynx that is a potential new drug target. This homomeric receptor is comprised of five non-α EAT-2 subunits and is not sensitive to existing cholinomimetic anthelmintics. We found that EAT-18, a novel auxiliary subunit protein, is essential for functional expression of the receptor. EAT-18 directly interacts with the mature receptor, and different homologs alter the pharmacological properties. Thus we have described not only a novel potential drug target but also a new type of obligate auxiliary protein for nAChRs.


Assuntos
Antinematódeos/farmacologia , Ascaris suum/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Helminto/metabolismo , Faringe/metabolismo , Receptores Nicotínicos/metabolismo , Acetilcolina/farmacologia , Animais , Ascaris suum/efeitos dos fármacos , Ascaris suum/genética , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Helminto/genética , Faringe/efeitos dos fármacos , Receptores Nicotínicos/genética
18.
Vet Parasitol ; 278: 109031, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32032866

RESUMO

The neuromuscular system of parasitic nematodes has proven to be an efficient pharmacological target for antihelmintics. Some of the most frequently used antiparasitic drugs are agonists or antagonists of nicotinic acetylcholine receptors (nAChRs). The antinematodal mechanism of action of carvacrol involves the inhibition of parasite muscle contraction. We have examined the interaction of carvacrol with antinematodal drugs that are agonists of different subtypes of nAChRs and monepantel, which is a non-competitive antagonist of this receptor in A. suum. Additionally, we investigated the effect of carvacrol on the muscle type of nAChRs in the mammalian host. As orthosteric agonists of nAChR, pyrantel, morantel and befinijum lead to dose-dependent contractions of the neuromuscular preparation of Ascaris suum. Carvacrol 100 µM decreased the Emax of pyrantel, morantel and bephenium by 29%, 39% and 12 %, 39 % and 12 % respectively. The EC50 ratio was 3.43, 2.95 and 2.47 for pyrantel, morantel and bephinium, respectively. Carvacrol 300 u µM reduces the Emax of pyrantel, morantel and bephenium by 71%, 80% and 75 %, 80 % and 75 % respectively. The EC50 ratio for pyrantel, morantel and bephenium was 3.88, 3.19 and 4.83 respectively. Furthermore, carvacrol enhances the inhibitory effect of monepantel on A. suum contractions, which may have an effective clinical application. On the other hand, tested concentrations of carvacrol did not significantly affect the EFS-induced contractions of the rat diaphragm, indicating a lack of interaction with the postsynaptic nAChR at the muscle end plate in mammals, but the highest concentration (300 µM) caused a clear tetanic fade. Carvacrol exhibited a time and dose-dependent effect on the Rota-rod performances of rats with a high value of the ED50 (421.6 mg/kg). In our research, carvacrol dominantly exhibited characteristics of a non-competitive antagonist of nAChR in A. suum, and enhances the inhibitory effect of monepantel. The combination of monepantel and carvacrol may be clinically very effective, and the carvacrol molecule itself can be used as a promising platform for the development of new anthelmintic drugs.


Assuntos
Aminoacetonitrila/análogos & derivados , Antinematódeos/farmacologia , Ascaris suum/efeitos dos fármacos , Cimenos/farmacologia , Agonistas Nicotínicos/farmacologia , Antagonistas Nicotínicos/farmacologia , Aminoacetonitrila/farmacologia , Animais , Sistema Nervoso Central/efeitos dos fármacos , Diafragma/efeitos dos fármacos , Feminino , Músculos/efeitos dos fármacos , Ratos
19.
Invert Neurosci ; 19(4): 11, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31486912

RESUMO

Parasitic nematode infections are treated using anthelmintic drugs, some of which target nicotinic acetylcholine receptors (nAChRs) located in different parasite tissues. The limited arsenal of anthelmintic agents and the prevalence of drug resistance imply that future defense against parasitic infections will depend on the discovery of novel targets and therapeutics. Previous studies have suggested that Ascaris suum ACR-16 nAChRs are a suitable target for the development of antinematodal drugs. In this study, we characterized the pharmacology of the Ancylostoma caninum ACR-16 receptor using two-electrode voltage-clamp electrophysiology. This technique allowed us to study the effects of cholinergic agonists and antagonists on the nematode nAChRs expressed in Xenopus laevis oocytes. Aca-ACR-16 was not sensitive to many of the existing cholinomimetic anthelmintics (levamisole, oxantel, pyrantel, and tribendimidine). 3-Bromocytisine was the most potent agonist (> 130% of the control acetylcholine current) on the Aca-ACR-16 nAChR but, unlike Asu-ACR-16, oxantel did not activate the receptor. The mean time constants of desensitization for agonists on Aca-ACR-16 were longer than the rates observed in Asu-ACR-16. In contrast to Asu-ACR-16, the A. caninum receptor was completely inhibited by DHßE and moderately inhibited by α-BTX. In conclusion, we have successfully reconstituted a fully functional homomeric nAChR, ACR-16, from A. caninum, a model for human hookworm infections. The pharmacology of the receptor is distinct from levamisole-sensitive nematode receptors. The ACR-16 homologue also displayed some pharmacological differences from Asu-ACR-16. Hence, A. caninum ACR-16 may be a valid target site for the development of anthelmintics against hookworm infections.


Assuntos
Ancylostoma/metabolismo , Anti-Helmínticos/farmacologia , Proteínas de Helminto/efeitos dos fármacos , Receptores Nicotínicos/efeitos dos fármacos , Ancilostomíase , Animais , Colinérgicos/farmacologia , Proteínas de Helminto/análise , Proteínas de Helminto/metabolismo , Receptores Nicotínicos/análise , Receptores Nicotínicos/metabolismo
20.
PLoS Pathog ; 15(9): e1008041, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31553770

RESUMO

Filariae are parasitic nematodes that are transmitted to their definitive host as third-stage larvae by arthropod vectors like mosquitoes. Filariae cause diseases including: lymphatic filariasis with distressing and disturbing symptoms like elephantiasis; and river blindness. Filarial diseases affect millions of people in 73 countries throughout the topics and sub-tropics. The drugs available for mass drug administration, (ivermectin, albendazole and diethylcarbamazine), are ineffective against adult filariae (macrofilariae) at the registered dosing regimen; this generates a real and urgent need to identify effective macrofilaricides. Emodepside, a veterinary anthelmintic registered for treatment of nematode infections in cats and dogs, is reported to have macrofilaricidal effects. Here, we explore the mode of action of emodepside using adult Brugia malayi, one of the species that causes lymphatic filariasis. Whole-parasite motility measurement with Worminator and patch-clamp of single muscle cells show that emodepside potently inhibits motility by activating voltage-gated potassium channels and that the male is more sensitive than the female. RNAi knock down suggests that emodepside targets SLO-1 K channels. We expressed slo-1 isoforms, with alternatively spliced exons at the RCK1 (Regulator of Conductance of Potassium) domain, heterologously in Xenopus laevis oocytes. We discovered that the slo-1f isoform, found in muscles of males, is more sensitive to emodepside than the slo-1a isoform found in muscles of females; and selective RNAi of the slo-1a isoform in female worms increased emodepside potency. In Onchocerca volvulus, that causes river blindness, we found two isoforms in adult females with homology to Bma-SLO-1A and Bma-SLO-1F at the RCK1 domain. In silico modeling identified an emodepside binding pocket in the same RCK1 region of different species of filaria that is affected by these splice variations. Our observations show that emodepside has potent macrofilaricidal effects and alternative splicing in the RCK1 binding pocket affects potency. Therefore, the evaluation of potential sex-dependent effects of an anthelmintic compound is of importance to prevent any under-dosing of one or the other gender of nematodes once given to patients.


Assuntos
Brugia Malayi/efeitos dos fármacos , Brugia Malayi/fisiologia , Depsipeptídeos/farmacologia , Filaricidas/farmacologia , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Processamento Alternativo , Sequência de Aminoácidos , Animais , Sítios de Ligação/genética , Brugia Malayi/genética , Feminino , Filariose/tratamento farmacológico , Filariose/parasitologia , Técnicas de Silenciamento de Genes , Humanos , Canais de Potássio Ativados por Cálcio de Condutância Alta/química , Canais de Potássio Ativados por Cálcio de Condutância Alta/genética , Masculino , Modelos Moleculares , Movimento/efeitos dos fármacos , Movimento/fisiologia , Músculos/efeitos dos fármacos , Músculos/fisiologia , Peptídeos/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Homologia de Sequência de Aminoácidos , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...